COVID-19 Updates

Visit UC San Diego's Coronavirus portal for the latest information for the campus community.

Older News & Events

6/25/2021 - 6/27/2021
Join Dr. Resnick and the UCSD MSK team for "Internal Derangement of Joints," this year focusing on the upper extremity! Register at Educational Symposia. We look forward to seeing you there!


Join some of the UCSD faculty for great learning opportunities at the upcoming ARRS meeting! Dr. Chung will be speaking Wednesday and covering MRI of the hand. Dr. Huang will be speaking Tuesday and covering ultrasound of the wrist. For more info, go to the ARRS meeting website!


Blast from the past! Dr. Goodwin, a former 93-94 fellow and recently retired staff from Dartmouth delivers an excellent and practical lecture about ankle trauma! 

Former fellow, Dr. Baldassarre tackles the complex subject of imaging of acetabular fractures.


Dr. Huang will lend his expertise in this 2-part lecture series focusing on brachial plexus 1) anatomy and 2) pathology. Tune into the UCSD Grand Rounds and San Diego Radiological Society for each lecture part.


Dr. Serrano from Santiago, Chile delivers 2 exciting lectures! 1) MCP joint of the thumb and 2) Muscle injuries. Thank you Dr. Serrano!


Former fellows, Drs. Christopher Maxwell and Hanna Chen follow-up with an in-depth update of scaphoulnate instability. Also, check out their RadSource MRI Web Clinic article for more information! 

Dr. Dyan Flores gives an review of her award winning RSNA 2020 educational exhibits, discussing the finer points of carpal instability!


Dr. Bryan Leek gives an overview of the history of shoulder arthroplasties, all the way to newer reverse shoulder arthroplasty concepts.

10/23/2020 - 10/25/2020

Join Dr. Resnick and the UCSD MSK team for the "Internal Derangement of Joints" live online webinar. Register at Educational Symposia.


Dr. William Millard, former fellow from 2016-2017, helps us understand the complexities and intricacies of the lumbosacral plexus!


Dr. Eric Bultman deliverse a fantastic lecture on the physics of fat-suppression techniques on MRI. 


Dr. Wilbur Wang lectures the UCSD MSK staff, fellows, and residents on the utility of chemical shift MR imaging in MSK applications! Another excellent guest lecture!

Dr. Diego Lemos lectures the UCSD MSK staff, fellows, and residents on the finer points of superior capsular reconstruction of the shoulder. Follow Dr. Lemos on twitter @dflemosmd

UCSD welcomes it's new MSK Fellows for the 2020-2021 academic year! Another stellar group!


Need more MSK education? See terrific cases in MSK and general radiology on Dr. Smitaman's instragram account. Follow Dr. Smitaman on instagram @xrayt_ed 

Radiology Side Trip

Features Srihari Sampath, MD PhD, and Srinath Sampath, MD PhD

​Does the human genome contain more information than we think?

Radiologists don't often consider such basic science questions. But in their dual roles as Musculoskeletal Radiologists at UC San Diego and Musculoskeletal Biology Lab heads at the Genomics Institute of the Novartis Research Foundation (GNF), Srihari Sampath, MD PhD , and Srinath Sampath, MD PhD , ask questions like this routinely.

In fact, it was this question that put them on the path to discovering a new gene required for skeletal muscle formation (Zhang et al., Nat Commun. 2017 Jun 1;8:15664).


​Scientists have believed for some time that the increasing complexity of organisms—from flies to humans, for instance—can't be explained readily by an increase in the number of genes. Sampath and Sampath considered the intriguing possibility that more genes do actually exist in mammals, but that those additional genes have been overlooked due to the convention that defines genes as "protein-encoding" only if they are above a particular (and arbitrary) cutoff size. Recent work has clearly identified important proteins below this cutoff in other species, particularly in fruit flies. Sampath and Sampath wondered if this phenomenon might apply to humans as well, and set out to uncover whether any such "microproteins" exist in mammalian skeletal muscle.

They looked at global gene expression in injured and uninjured mouse skeletal muscle, and were indeed able to identify a new gene encoding a microprotein below the arbitrary size cutoff. To their astonishment, when they genetically deleted this tiny gene via CRISPR/Cas9 gene editing, the mice died at birth. The reason was simple but informative: the gene is essential for formation of all mammalian skeletal muscle, and without it the muscles of respiration never form. Further work showed that this microprotein functions by enabling the fusion of single muscle cell progenitors to form the giant multinucleated cells which we know as myofibers. In honor of the protein's small size but big impact, they named it Minion (Microprotein INducer of FusION).

As physicians, Sampath and Sampath are naturally interested in the translational relevance of these findings. They and others are in fact exploring use of the Minion-based fusion program to accomplish "therapeutic" cell fusion, for instance in oncolytic therapy and cancer vaccine development. Recent work has also indicated that this fusion program is deficient in a human form of congenital myopathy, making the pathway itself a potential therapeutic target. Perhaps the longest term impact, though, is in drawing attention to the many mysteries that still lay hidden in the "dark matter" of our genomes.

Show additional content areas below