Courses Taught by Trey Ideker

Trey IdekerTrey Ideker
Professor of Medicine
Adjunct Prof. of Bioengineering
Adjunct Prof. of Computer Science 


New course beginning Spring 2018 
MED 283 / BNFO 286. Network Biology and Biomedicine 
Networks are pervasive in molecular biology and medicine. This course introduces biomolecular networks and their major analysis techniques and roles in biomedical research, including pathway-based genetic analysis. Recommended familiarity with bioinformatics programming; course examples are taught in Python.
Prerequisites may be waived with consent of instructor.
Prerequisites: Genetics (BICD100, BGGN 223, BIOM252, or equivalent) and Graduate Level Statistics (MED268, MATH 283, MATH 281A, MATH 281B, MATH 281C, FMPH 221, FMPH 222, or equivalent). 


Previous Courses Taught

BENG 203. Genomics, Proteomics, and Network Biology
Annotating genomes, characterizing functional genes, profiling, reconstructing pathways.

BIOM 262 / BGGN 237. Quantitative Methods in Genetics
Quantitative Methods in Genetics is designed to teach experimental and analytical approaches in modern genetics, from experimental design through data analysis in each of several topic areas. The course will use a combination of lectures, demonstrations, and hands-on data analysis.

BENG 183. Applied Genomic Technologies
Principles and technologies for using genomic information for biomedical applications. Technologies will be introduced progressively, from DNA to RNA to protein to whole cell systems. The integration of biology, chemistry, engineering, and computation will be stressed. Topics include: Technology for the Genome, DNA Chips, RNA Technologies, Proteomic Technologies, Physiomic and Phenomic Technologies, Analysis of Cell Function.
Prerequisite: grade of C– or better in BIMM 100 or Chem 114C; BICD 110; Bioinformatics majors only.

Journal reviews of the course:  

BENG 160. Chemical and Molecular Bioengineering Techniques
Introductory laboratory course in current principles and techniques of chemistry and molecular biology applicable to bioengineering. Quantitation of proteins and nucleic acids by spectrophotometric, immunological, and enzymatic methods. Separations and purification by centrifugation, chromatographic, and electrophoretic methods.
Prerequisites : BIBC 102, BICD 100, BENG 100, MAE 170; majors only or consent of instructor.

BENG 187. Bioengineering Design
Project: A). Planning 1; B) Development 1 A) Attendance at a weekly planning session on design projects. B) Development of original bioengineering design to solution of problem in biology or medicine. Analysis of economic issues, manufacturing and quality assurance, ethics, safety, government regulations, and patent requirements. Oral presentation and formal engineering reports.
Prerequisites : grade of C- or better in MAE 170; BENG 101 or BICD 100; BENG 112A or CENG 101A; BENG 140A or BIBC 102; BENG 186B or BENG 123; Bioengineering or Bioengineering: Biotechnology majors only or consent of instructor. (S)

BENG 202. Bioinformatics II: Sequence and Structure Analysis - Methods and Applications
Introduction to methods for sequence analysis. Applications to genome and proteome sequences. Protein Structure, sequence-structure analysis.