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Making connections: using 
networks to stratify human tumors
Benjamin J Raphael

Network-based stratification (NBS) enables the subtyping of tumors 
on the basis of their mutational profiles, providing new avenues for 
cancer research and precision oncology.

Identifying molecular markers that stratify 
tumor samples into meaningful subtypes is 
an important goal in cancer genomics. Ideally, 
these subtypes correlate with clinical fea-
tures, such as the aggressiveness of a tumor 
or response to drugs, and thus can be used 
to guide treatment. Early successes in defin-
ing such subtypes include the identification of 

translocations in leukemias, ERRB2 (HER2) 
amplification in a subset of breast cancers, and 
others1. Since the introduction in the late 1990s 
of microarray techniques, there has been an 
explosion of studies (reviewed in ref. 2) to define 
subtypes according to gene expression signa-
tures (Fig. 1). This work has led to some nota-
ble successes; but in many cancers, signatures  

or clinical correlations identified in one study 
were not reproduced in other studies.

In this issue, Hofree et al.3 introduce a novel 
approach to stratify patients on the basis of the 
somatic mutations present in their tumors. 
Cancer is a disease driven by such somatic 
mutations, which accumulate in the genome 
during the lifetime of the individual. Recent 
advances in high-throughput DNA sequenc-
ing technologies now enable whole-genome or 
whole-exome measurement of somatic muta-
tions. In particular, The Cancer Genome Atlas 
(TCGA) is using whole-exome sequencing to 
measure somatic mutations in protein-coding 
regions of genomes from ~500 samples from 
each of ~25 cancer types. Similar projects are 
underway by other groups, including dozens 
of national consortia under the umbrella of the 
International Cancer Genome Consortium.

The initial results from these large-scale 
sequencing studies demonstrated a major 
impediment to the use of somatic mutations 
for patient stratification, namely, cancers 
exhibit extensive mutational heterogeneity, 
with mutated genes varying widely across 
individuals. Moreover, an individual cancer  
sample may have somatic mutations in only a 
few to a few dozen of the ~21,000 human genes.  
In other words, if one builds a somatic muta-
tion profile for a sample, where each gene is 
assigned a 1 or a 0 if the gene is mutated or 
not mutated, respectively, then the resulting 
profiles will be sparse, or nearly all 0s (Fig. 1).  
Consequently, comparison or clustering of 
such mutation profiles will not yield additional 
information beyond that revealed by direct 
examination of the handful of commonly 
mutated genes.

Although mutation profiles constructed 
from mutations at the gene level are sparse, it is 
widely reported that cancer-causing, or ‘driver’, 
mutations affect genes in a smaller number 
of signaling and regulatory pathways4. The 
innovation in Hofree et al.3 is to use this path-
way information, as represented in a protein- 
protein interaction network, to create a 
smoothed mutation profile for each sample.  
The smoothing process is analogous to heat dif-
fusion: in brief, a mutation in a gene is a source 
of heat that diffuses to neighboring genes along 
the edges of the network. A similar diffusion was 
introduced in the HotNet algorithm5 to identify  
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Figure 1 | Network-based stratification and gene expression signatures are different approaches to 
stratify human tumors.
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significantly mutated subnetworks in several 
TCGA publications. Hofree et al.3 cleverly 
take an orthogonal approach with their NBS 
algorithm. They use the smoothed mutation 
profiles as the input to a clustering procedure, 
grouping the samples into a small number of 
subtypes according to the similarities between 
the smoothed mutation profiles.

Hofree et al.3 apply NBS to somatic mutation 
data from TCGA studies of ovarian carcinoma, 
endometrial carcinoma and lung adenocarci-
noma. On the ovarian and lung cancer data 
sets, NBS computes subtypes that discriminate 
the survival time of patients better than can 
subtypes derived from gene expression data. 
On the endometrial data set, NBS subtypes are 
closely associated with histological subtypes. 
Interestingly, although NBS significantly 
outperforms microarray-based gene expres-
sion for patient stratification, its gain over  
mRNA-Seq is smaller on the lung and endo-
metrial data sets, suggesting an overall advan-
tage for sequencing data (DNA or mRNA) 
over microarray data.

A second goal of tumor stratification is to 
examine whether the molecular markers in a 
signature are related to the disease mechanism. 
For gene expression signatures in cancer, the 
results of such analyses have been modest: 
many published signatures contain few genes 
whose aberrant expression plays a functional 
role in the pathogenesis of cancer. In some 
cases, the experiments necessary to demon-
strate such a functional role have not yet been 
performed. However, the lack of a functional 
role for the genes in a signature is not surpris-
ing. Because gene expression data are high 
dimensional, it is typically necessary to use 
dimensionality-reduction techniques to find 
a smaller subset of genes that stratify tumors 
(Fig. 1). As the expression of some genes 
is highly correlated with the expression of  
others, there may be many possible selections 
of genes for the signature, with each selec-
tion nearly equal in its ability to discrimi-
nate samples6,7. This implies that functional  

interpretation of genes in an expression signa-
ture should be treated with caution.

Given that driver mutations are by defini-
tion directly responsible for cancer, one might 
anticipate that mutation profiles, or network-
smoothed mutation profiles, would provide 
more functional insights than would gene 
expression signatures. Hofree et al.3 deter-
mined the genes and associated subnetworks 
that distinguish individual tumor subtypes. 
On the ovarian cancer data set, the subnet-
work for one subtype is enriched for DNA 
damage–response genes including ATM, 
BRCA1 and BRCA2, all well-known cancer 
genes. A second subtype subnetwork contains 
multiple fibroblast growth factor (FGF) signal-
ing genes, which were previously associated 
with resistance to therapy8. These results dem-
onstrate that the advantages of NBS extend 
beyond patient stratification to include the 
identification of driver genes and networks in 
these subtypes.

Not all genes in the NBS subtype networks 
are well-known cancer genes: on the contrary, 
some are proposed to be genes containing an 
unusually high number of random, ‘passenger’ 
mutations. Prominent among these is titin, the 
largest protein (36,800 amino acids) in the 
human genome. Because of its length, titin will 
harbor passenger mutations in more samples 
than will shorter genes9,10. Additional factors 
such as replication timing and expression level 
also elevate the background mutation rate of 
genes, including that of titin10. NBS treats all 
mutations in all genes equally. However, unlike 
driver mutations, passenger mutations are not 
expected to cluster in subnetworks of a protein-
protein interaction network. Thus, one might 
conjecture that the performance of NBS would 
improve if presumed passenger mutations were 
removed. Surprisingly, Hofree et al.3 found the 
opposite: NBS performance typically degraded 
when long genes, late-replicating genes, or 
mutations with no predicted functional impact 
(including synonymous mutations in the ovar-
ian data set) were removed.

Some of the presumed passenger muta-
tions and genes appearing in the NBS sub-
type networks may not be passengers and 
might be incorrectly discarded by overly 
conservative statistical approaches for test-
ing driver genes. Alternatively, these genes 
may in fact be passengers yet still be useful 
for patient stratification, perhaps owing to 
correlations with other features. For example, 
recent mathematical models propose that 
half or more of the passenger mutations in 
tumors from self-renewing tissues accumu-
late before tumorigenesis11. This discrepancy 
between the importance of certain muta-
tions for NBS subtypes and their classifica-
tion as passengers by other tests is worthy of  
further study.

NBS makes it possible to derive clinically 
and biologically meaningful subtypes directly 
from whole-exome and whole-genome cancer 
sequencing data sets. As these data sets con-
tinue to increase in size and scope, NBS may 
have a prominent role in cancer research and 
in precision oncology.
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