2018 Seminars

March 28, 2018 - Dr. Blanca Himes
Biomedical Informatics Approaches to Study Asthma
Abstract: Various efforts are underway to gather a wide range of patient-specific data, including symptoms, medication utilization, environmental exposures, and genomics, with the expectation that collection and integration of this data will enable personalized medicine. This talk will illustrate different approaches taken specifically to study asthma, ranging from the use of electronic-health record (EHR)-derived data to the analysis of transcriptomic data. 
Bio: Dr. Himes’ research focuses on gaining insights into asthma pathogenesis and treatment using biomedical informatics approaches. She has performed genome-wide association studies of asthma and related traits as a lead investigator and as part of large collaborations. She has used probabilistic graphical models to find genetic association networks and designed a computational algorithm to search through large datasets for optimal predictors of a phenotype. She has identified and characterized subjects for asthma genomics studies using patient-derived data from electronic medical records. Most recently, she has used RNA-Seq to study human airway smooth muscle cell response to asthma medications, vitamin D, and to identify differences in response between fatal asthma patients vs. individuals without asthma. 

March 16, 2018 - Dr. Xiaoqian Jiang
Calibration of Predictive Models for Clinical Decision Making
Abstract: A large number of clinical decision support applications rely on predictive models for binary outcomes. These models usually estimate the probability for an outcome of interest (e.g., probability of readmission to the hospital within a time window). Given that clinical decisions rely on these probability estimates, it is critical that they be well calibrated (i.e., the estimates are sufficiently close to the true underlying probability that the event will occur). Surprisingly, the evaluation of predictive models rarely includes an assessment of calibration, while essentially all include an assessment of discrimination (e.g., AUC: areas under the ROC curve). I will describe the perils of using non-calibrated models for making clinical and administrative decisions, describe various methods to recalibrate existing models or to include calibration in model development algorithms.  
Bio: Xiaoqian Jiang is an associate professor in Biomedical Informatics. He received his PhD in Computer Science from Carnegie Mellon University and joined UCSD in 2011. He is an associate editor of BMC Medical Informatics and Decision Making and serves as the editorial board member of Journal of American Medical Informatics Association and Harvard Papers on Technology Science (H-POTS). He has received several awards for best and distinguished paper awards at American Medical Informatics Association (AMIA) Joint Summits on Translational Science (2012, 2013, 2016).

March 9, 2018 - Dr. Alex Cloninger
Precision Treatment Rules with Machine Learning
Abstract: This talk will cover several topics on causal inference, and the ways in which machine learning can play a role in moving to personalized treatment decisions.  We will discuss how deep learning can be structured to address this problem in a randomized setting, and also address various problems with generalizing to observational data, including improvements to propensity matching and methods for determining distances between treated and control groups.
Bio: Alex Cloninger is an Assistant Professor of Mathematics at UCSD. He received his PhD in Applied Mathematics and Scientific Computation from the University of Maryland in 2014, and was then a Gibbs Assistant Professor of Mathematics at Yale University until 2017, when he joined UCSD. His research interests are in applied harmonic analysis, machine learning and neural networks, diffusion geometry, analysis of graphs and data sets sampled from continuous geometric structures embedded in high-dimensional spaces, and applications in treatment effectiveness, medical imaging, and other various scientific domains.

March 2, 2018 - Dr. Ming Tai-Seale
Improving Patient-Centered Communication in Primary Care
Abstract: Ming Tai-Seale, PhD, MPH will discuss the design and plan of a $5.8 million, multi-site study funded by the Patient-Centered Outcomes Research Institute (PCORI): “Improving Patient-Centered Communication in Primary Care: A Cluster Randomized Controlled Trial of the Comparative Effectiveness of Three Interventions.” To rigorously answer the question of which approach is more effective and more scalable in promoting patient-centered communication, it does a head-to-head comparison of three different interventions: Open Communication High Touch, Open Communication High Tech, and ASK (a preexisting simple intervention). The study will have three arms, with twenty one clinics in three health care delivery systems, including UCSD Health.  
Bio: Ming Tai-Seale, PhD, MPH, Professor of Family Medicine and Public Health, UCSD School of Medicine, and Director of Outcomes Analysis at UCSD Health IS Department, is a health economist and health services researcher. Tai-Seale examines the impact of financial and organizational incentives on health services delivery and patient outcomes. She collaborates with physicians, patients, clinic leaders, and researchers from multiple disciplinary backgrounds to study patient-physician communication, primary care transformation, and how physicians allocate time and effort in office visits by taking a detailed look at patient-physician communication captured by video- or audio-recordings and the access log of EpicCare. A paper resulting from analyses of EpicCare Logs was the second most read paper in Health Affairs in 2017.

February 23, 2018 - Dr. Eric Hekler
Using Mobile Health Technologies to Affect Behavior Change
Abstract: Three emerging trends are disrupting current models for promoting health and treating illness: 1) unsustainable growth in the complexity and cost of healthcare & health promotion; 2) a movement towards more human-centered and personalized strategies for fostering health and treating disease; and 3) an explosion in information, communication, and computing technologies and the “big data” these systems produce. There is great excitement about the possibility of leveraging the second and third trends to realize the vision of a human-centered, preventive, cost-effective health system and corresponding “Culture of Health” but myriad technical and, perhaps more importantly, cultural challenges need to be overcome. PURPOSE: The purpose of this presentation is to present conceptual work on an “agile” scientific process for creating, optimizing, and repurposing useful and usable behavior change interventions, coupled with empirical research related to more personalized and precise digital health interventions focused on behavior change that can help to enable this broader vision. OUTLINE: The talk will begin with a brief summary on how the “agile science” process is an alternative way of conceptualizing evidence-based practice for behavior change that acknowledges the above three trends. Following this, key empirical work will be presented that with regard to the use of control systems engineering for behavior change, just-in-time adaptive interventions, and supporting individuals in conducting their own “self-experiments” for behavior change.  I will conclude with examples of ongoing projects that I’m involved in with partners in academia, industry, clinical practice, and patient-lead scientists, as illustrations of the many plausible use-cases of agile science.  
Bio: Eric Hekler, PhD, is an Associate Professor in the Department of Family Medicine and Public Health at UCSD. He is also Director of the Center for Wireless & Population Health Systems and faculty member of the Design Lab at UCSD. His research focuses on facilitating individualized behavior change for fostering long-term health and well-being via digital health tools. Prior to UCSD, Dr. Hekler was a faculty member at Arizona State University.  He completed his postdoctoral training at Stanford University and received his Ph.D. in Clinical Health Psychology from Rutgers University.

February 16, 2018 - Dr. Michael Hogarth
Keeping us Safe: An overview of US public health informatics systems and architectures
Abstract: Modern society is highly dependent on the provisioning of clean water, healthy and plentiful food, breathable air, and prompt intervention to curtail disease outbreaks. The public health system is critical in supporting these activities. Today’s information technology provides public health practitioners key capabilities in maintaining the health of the population. This lecture will provide a basic foundation of knowledge about public health practice for clinical informaticians, and highlight specialized information systems and data standards used in public health today.  We will explore the existing public health informatics infrastructure including surveillance systems, the process of electronic laboratory reporting (ELR) of notifiable diseases, vital statistics systems, and the critical importance of  GIS systems in the public health.  
Bio: Dr. Michael Hogarth is board certified Internal Medicine physician and a faculty in biomedical informatics. He currently also serves as Chief Clinical Research Information Officer for UC San Diego Health. He is also engaged in a number of grant and contract funded activities. These include the California Electronic Death Registration System (California EDRS), the Maryland Death Registration System, the Athena Breast Health Network project (http://www.athenacarenetwork.org), the novel I-SPY2 adaptive breast cancer clinical trial, the pSCANNER clinical data research network (CDRN), and the California Precision Medicine Consortium (CaPMC). In 2015 he was elected to the American College of Medical Informatics (ACMI).  Dr. Hogarth's research interests include the development of next generation public health information systems, terminology/ontology infrastructure in biomedical informatics, and developing systems that support clinical research at the point of care.

February 9, 2018 - Dr. Erik Viirre
The Qualcomm Tricorder XPRIZE: Experience and Inspiration
Abstract: The Qualcomm Tricorder XPRIZE had the biggest prize purse for Medicine in history: $10 Million. Conceived in 2011 and completed in 2017, competitors from around the world designed, tested and delivered mobile health systems to the UCSD CTRI where the QTXP Test Program was hosted. Consumers with a wide variety of health conditions were solicited from the UCSD Health System and brought for extended interactions with the systems… with no medical or technical experts allowed. Consumers successfully used the systems and described high levels of acceptance. In this presentation, the conception, plans, successes and failures of the competition will be described. Most exciting, some prize funds have been dedicated back to UCSD for a follow-on program to further develop the systems and bring them to commercial reality.  
Bio: Dr. Viirre was the Medical and Technical Director of the Qualcomm Tricorder XPRIZE and the Nokia Sensing XCHALLENGE, since the opening of the competitions in 2012. These competitions are the most valuable prizes in Medical history and are dedicated to development of mobile health platforms. Dr. Viirre’s primary appointment is Adjunct Professor in the UCSD Departments of Neurosciences, Surgery and Cognitive Science. His clinical specialties are vertigo, balance problems and tinnitus. In the UCSD Health System, he treats people with disorders such as Migraine, Meniere’s Disease, inner ear infections and Benign Positional Vertigo (BPV). At UCSD, under Dr. Viirre’s supervision, the human Test Program for the Tricorder XPRIZE took place. Dr. Viirre’s scientific interests include vision, hearing and the vestibular system and higher cognitive function where he is extensively published in the scientific literature. At the Arthur C Clarke Center for Human Imagination, he is the Associate Director, dedicatd to the neuroscience of Imagination. Dr. Viirre has done research for the National Institutes of Health, the United States Navy, DARPA and NASA. He is an experienced technology developer with numerous patents and completed engineering projects. He is has been a consultant for groups such as medical research foundations, the National Academy of Science and a variety of medical and computer technology companies. Dr. Viirre has participated in a variety of start-up companies, including Zero G Corporation, and Otosound LLC, which is bringing to market technology for treatment of tinnitus that he developed and patented at UCSD.
Dr. Viirre received his Ph.D. in Neurophysiology in 1987 at the University of Western Ontario in London, Canada and his M.D. in 1988. Also in 1988, he was in the inaugural class of International Space University. He completed a Rotating Internship at St. Josephs's Medical Center in London, Canada in 1989. After his internship in London, he was a fellow at the Robarts Research Institute in functional imaging and had an eye care practice. In 1994, Dr. Viirre was a Visiting Professor in Neurology and Ophthalmology at UCLA where he did a fellowship in Medical Neurotology, the management of inner ear disorders. In 1995-99 he was a Scientist at the Human Interface Technology Lab at the University of Washington. He was a Senior Scientist in the Human Performance Department of the US Navy’s Naval Health Research Center from 2001 to 2012.

February 2, 2018 - Dr. Ali Torkamani
High Definition Medicine
Abstract: The foundation for a new era of data-driven medicine has been set by recent technological advances that enable the assessment and management of human health at an unprecedented level of resolution – what we refer to as high definition medicine. Dr. Torkamani will discuss our progress towards high-definition medicine through examples of research conducted at The Scripps Translational Science Institute using a combination of genomic and digital health approaches to characterize and return useful health insights to individuals.  
Bio: Dr. Torkamani obtained his undergraduate degree in chemistry at Stanford University, where he received a Bing Foundation Chemistry Research Fellowship, and his doctorate in biomedical sciences at the University of California, San Diego, (in record time) under the mentorship of Dr. Nicholas Schork as an NIH Genetics Predoctoral Training awardee. In 2008, he joined the Scripps Translational Science Institute as a Research Scientist and Donald C. and Elizabeth M. Dickinson Fellow, and shortly thereafter as an Assistant Professor of Molecular and Experimental Medicine and Mario R. Alvarez Fellow. In 2012, Dr. Torkamani advanced to Director of Genome Informatics at STSI where he leads various human genome sequencing and other genomics initiatives. Dr. Torkamani was also co-founder and Chief Scientific Officer of Cypher Genomics Inc – acquired by Human Longevity Inc in 2015.

January 26, 2018 - Dr. Lucila Ohno-Machado
Biomedical Informatics at UCSD: From Data to Precision Medicine
Bio: Lucila Ohno-Machado, MD, MBA, PhD received her medical degree from the University of São Paulo and her doctoral degree in medical information sciences and computer science from Stanford. She is Associate Dean for Informatics and Technology, and the founding chair of the Health System Department of Biomedical Informatics at UCSD, where she leads a group of faculty with diverse backgrounds in medicine, nursing, informatics, and computer science. Prior to her current position, she was faculty at Brigham and Women’s Hospital, Harvard Medical School and at the MIT Division of Health Sciences and Technology. Dr. Ohno-Machado is an elected fellow of the American College of Medical Informatics, the American Institute for Medical and Biological Engineering, and the American Society for Clinical Investigation. She serves as editor-in-chief for the Journal of the American Medical Informatics Association since 2011. She directs the patient-centered Scalable National Network for Effectiveness Research funded by PCORI (and previously AHRQ), a clinical data research network with over 24 million patients and 14 health systems, as well as the NIH/BD2K-funded Data Discovery Index Consortium. She was one of the founders of UC-Research eXchange, a clinical data research network that connected the data warehouses of the five University of California medical centers. She was the director of the NIH-funded National Center for Biomedical Computing iDASH (integrating Data for Analysis, ‘anonymization,’ and Sharing) based at UCSD with collaborators in multiple institutions. iDASH funded collaborations involving study of consent for data and biospecimen sharing in underserved and under-represented populations.

January 19, 2018 - Dr. Vitaly Herasevich
Implementation and evaluation of clinical informatics applications: journey of “AWARE” and “Sepsis Sniffer”
Abstract: Development and implementation of sepsis alert systems is challenging, particularly outside the monitored intensive care unit (ICU) setting. Barriers to wider use of sepsis alerts include evolving clinical definitions of sepsis, information overload, and alert fatigue, due to suboptimal alert performance. Outside the ICU, barriers include differences in health care delivery models, charting behaviors, and availability of electronic data. Current evidence does not support routine use of sepsis alert systems in clinical practice. Continuous improvement in the afferent and efferent aspects will help translate theoretic advantages into measurable patient benefit.  
Bio: Vitaly Herasevich, MD, PhD is an Associate Professor of Anesthesiology and Medicine in the Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, Minnesota. He has been involved in medical informatics for over 20 years, with a specific concentration on applied clinical informatics in critical care and the science of health care delivery.
He was born in Belarus, where he earned his M.D. and Ph.D. degrees, and joined the Mayo Clinic in 2006. Later he finished MSc in clinical research at Mayo Clinic and became Certified Professional in Healthcare Management Systems (CPHIMS).
He codirects the Clinical Informatics in Intensive Care program as part of a research group that works to decrease complications and improve outcomes for critically ill patients through systematic research and quality improvement. He is interested in studying and developing clinical syndromic surveillance alerting systems ("sniffers"), clinical data visualization (novel patient-centered EMR), and complex large data warehousing for health care predictive and prescriptive analytics as well as outcome reporting. He is co-inventor of number of technologies including AWARE platform, resulting in technologies commercialization. He has coauthored 80 articles and authored book Health Information Evaluation. As part of an education effort, Dr. Herasevich developed curriculums and teaches clinical informatics to medical students, residents, fellows at the Mayo Medical School and Mayo Graduate School. He is Fellow of Society of Critical Care Medicine and active within informatics and professional societies serving on a number of committees.

January 12, 2018 - Dr. Matt Eisenberg 
Health Information Exchange: What’s taking so long, what are the real barriers and why won’t the fax machine just die?
Easy access to clinical information that travels with the patient wherever she seeks care was supposed to revolutionize medicine and provide dramatic cost savings to the US Health System.  Even as most health systems and provider offices have successfully adopted EHR technology and report sharing data with outside organizations (see graph), interoperability and open health information exchange for the purpose of treatment and care coordination (forget about research) still seems like a pipe dream to many providers and patients.  Let’s find out why…  
Bio: Dr. Matthew Eisenberg joined Stanford Health Care as a Medical Informatics Director for Analytics and Innovation in February 2013.  His work at Stanford Health Care focuses on interoperability – specifically health information exchange, quality and regulatory reporting, population health and analytics for improvement.  Stanford Health Care is a HIMSS Stage 7 certified hospital and outpatient organization.  Prior to joining Stanford Health Care, he was the Medical Vice President for Clinical Informatics at MultiCare Health System in Tacoma, Washington.
Dr. Eisenberg is board certified in Pediatrics and Clinical Informatics.  He is Clinical Assistant Professor (Affiliated) in the Stanford Center for Biomedical Informatics Research within Stanford University’s School of Medicine.  He is currently a member of the eHealth Exchange Coordinating Committee, the Sequoia Project Board of Directors, the Carequality Advisory Council and the Chair of the Epic Care Everywhere Governing Council.  He serves as the Associate Program Director for the Stanford Clinical Informatics Fellowship Program.  He is a member of the American Academy of Pediatrics Council on Clinical Information Technology, the AMIA Clinical Decision Support Workgroup, the American Association for Physician Leadership, the Association of Medical Directors of Information Services and HIMSS.
After completing medical school at the University of California, San Francisco and pediatric residency at Boston Children’s, Dr. Eisenberg began his private practice career in general pediatrics at The Palo Alto Medical Clinic back in 1990 when medical records were still on papyrus.  After moving to the Pacific Northwest he joined the Virginia Mason Medical Center in 1996.  He completed a fellowship training program in Evidence Based Pediatrics at the University of Washington in 1998.  In 2003 Dr. Eisenberg joined Seattle Children’s as an informatics physician and began work on their acute care CPOE implementation using a Cerner Millennium EMR platform.  His work focused initially on order set development and physician training and he expanded his informatics role as Seattle Children’s implemented their ambulatory EMR with CPOE. During his tenure at Seattle Children’s, Dr. Eisenberg was an active member of the Cerner Physician Reference Group.  He completed the Oregon Health and Science University AMIA 10 x 10 training course in 2006.  In 2007 Dr. Eisenberg joined MultiCare Health System, an integrated delivery system in Tacoma, WA as their new Medical Director of Information Services.  MultiCare was an early adopter of Epic systems software dating back to 1998.  After Dr. Eisenberg’s arrival, MultiCare extended their electronic health record across the enterprise to include four of five hospitals, implemented bedside bar coding, installed an integrated enterprise content management system and pushed the envelope of health information exchange as an early participant in the nationwide health information network (NwHIN) via the Virtual Lifetime Electronic Record (VLER) project.  In 2009, MultiCare was awarded the HIMSS Davies Organizational Award.