Using Digital Phenotyping to Assess Cognitive Status of Patients with Advanced Liver Disease

Charles Yu
PI: Dr. Jejo Koola

This research was supported by grant T15LM011271
About Me

• Incoming third-year student at University of California, San Diego
• Double major in Computer Science and Probability & Statistics with a minor in Linguistics
• Academic Interests
 • Natural Language Processing – Machine reading
 • Stochastic Processes – Random walks
 • Pragmatics – Information Structure
Aim of this Study

• Assess cognitive status of patients with liver disease
• Predict/Diagnose hepatic encephalopathy
• Use digital phenotyping
Hepatic Encephalopathy

• Hepatic – relating to the liver
• Encephalopathy – brain disease
• Hepatic Encephalopathy – neuropsychiatric abnormalities in patients with liver impairment; cognitive dysfunction due to metabolic failures caused by impaired liver function
Liver Function

- Makes essential compounds for bodily function
 - Albumin
 - Blood clotting factors
 - Triglycerides
 - Glycogen
 - Bile
Liver Function

- Stores compounds
 - Vitamins
 - Iron
 - Cobalamin
Liver Function

• Removes toxins
 • Processes medications
 • Drugs
 • Alcohol
 • Converts ammonia into urea
 • Breaks down insulin and other hormones
Normal liver vs. liver cirrhosis

A normal liver (left) shows no signs of scarring. In cirrhosis (right), scar tissue replaces normal liver tissue.

Source: https://www.mayoclinic.org/diseases-conditions/cirrhosis/symptoms-causes/syc-20351487
Causes of Cirrhosis

- Chronic viral hepatitis (mostly hepatitis C)
- Cystic fibrosis
- Primary sclerosing cholangitis
- Hemochromatosis
- Wilson's disease
- Diabetes
- Alcohol abuse
Cirrhosis Causes

- Fatigue
- Easy bleeding and bruising
- Loss of appetite
- Nausea
- Edema in legs/feet/ankles
- Weight loss
- Itchy skin
- Jaundice

- Ascites
- Spiderlike blood vessels on the skin
- Redness in the palms of the hands
- Hepatic encephalopathy
Cirrhosis Prevalence

• 700,000 people in the United States have cirrhosis
• Nearly 70% unaware

Cirrhosis → Hepatic Encephalopathy

• Development/progression to hepatic encephalopathy high
• One-third have some degree of mild/subclinical hepatic encephalopathy
• One-third have clinically apparent hepatic encephalopathy

Source: Mayo Clinic
Severity of Hepatic Encephalopathy

Disease Severity

Covert Hepatic Encephalopathy
- Minimal
 - Inattentiveness
 - Irritability

Grade 1
- Impaired sleep
- Impairment basic math
- Euphoria/anxiety

Overt Hepatic Encephalopathy

Grade 2
- Lethargy
- Personality change
- Asterixis
- Motor changes

Grade 3
- Obtundation
- Confusion
- Bizarre behavior
- Motor changes

Grade 4
- Coma
How do we diagnose hepatic encephalopathy when the patients don’t realize their symptoms might be because of it?
Current method of diagnosis

- Time consuming
- Require a doctor or expert to conduct many tests
- Must be done at an in-person clinic visit
- Those around the patients must bring them to the clinic
How do we treat hepatic encephalopathy before patients and those around them realize something is wrong?
How do we treat hepatic encephalopathy before patients and those around them realize something is wrong?

Digital Phenotyping
What is Digital Phenotyping?

• “the moment–by–moment quantification of the individual–level human phenotype in situ using data from personal smartphones” – Jukka–Pekka Onnela

Passive Data from Digital Datastreams

- Noninvasive
- No-to-little added effort from patients
- Smartphone data
- Wearable technology data
Smartphone Data

- Keyboard
 - Sessions
 - Keystrokes
 - Autocorrection
 - Deletion
- Accelerometer
Wearable Technology

• Fitbit
 • Sleep stages
 • Sleep time
 • Charging frequency
 • Calories
 • Steps
 • Heart rate
 • Intense physical activity

This research was supported by grant T15LM011271
Indications of HE

• Keyboard
 • Type less
 • Autocorrect more
 • Make more mistakes
 • Fewer sessions

• Accelerometer
 • Orientation (position of phone usage)
 • Movement of patient
More Indications of HE

- Fitbit
 - Sleep more
 - More erratic sleep stages
 - Charging less
 - Fewer calories
 - Fewer steps
 - Less physical activity
 - Implicit data
 - Forgetting to wear

This research was supported by grant T15LM011271
Supplements for Study

• Formal examinations
 • Clinic visits
 • Psychometric Hepatic Encephalopathy Score (PHES)
 • Stroop test
 • Inhibitory Control Test (ICT)
 • Lab tests – blood panels
 • Model for End–Stage Liver Disease (MELD) Score

• Self–administered
 • Stroop test
Benefits

• Save time
 • Fewer “unnecessary” clinic visits

• Save money
 • Fewer “unnecessary” clinic visits

• Patients, like us, would spend most time at home or work
 • Up to the people around them to realize something’s wrong
 • Can track patients when not at the clinic

This research was supported by grant T15LM011271
How to Interpret and Use Digital Datastreams

- Machine Learning and Artificial Neural Networks
 - Recurrent Neural Networks (RNN)
 - Long Short-term Memory (LSTM)
 - Gated Recurrent Units (GRU)

All proceeding figures and diagrams source: Olah, Christopher. https://colah.github.io/posts/2015-08-Understanding-LSTMs/
Recurrent Neural Networks

\[h_t = A \]

\[X_t \]

\[h_0 \]

\[h_1 \]

\[h_2 \]

\[\cdots \]

\[h_t \]

\[X_0 \]

\[X_1 \]

\[X_2 \]

\[X_t \]
Recurrent Neural Networks

This research was supported by grant T15LM011271
Long Short Term Memory Networks

The repeating module in a standard RNN contains a single layer.

The repeating module in an LSTM contains four interacting layers.
Gated Recurrent Unit

\[
\begin{align*}
 z_t &= \sigma(W_z \cdot [h_{t-1}, x_t]) \\
 r_t &= \sigma(W_r \cdot [h_{t-1}, x_t]) \\
 \tilde{h}_t &= \text{tanh}(W \cdot [r_t \ast h_{t-1}, x_t]) \\
 h_t &= (1 - z_t) \ast h_{t-1} + z_t \ast \tilde{h}_t
\end{align*}
\]
Benefit of Using These

• Long–term dependencies
 • Changes relating to each patient, not relating to some general average
 • Longitudinal/time series
Next Steps

- Get more patient data
- Keep training our models
- Adjust hyperparameters
- Scale this study
- Generalize this study design
What I learned

• Legal and ethical use of protected health information
• How to structure and conduct a research study
• How to structure and write a research paper
• Gained experience with collecting data with electronic data capture software
• Gained experience with data wrangling

This research was supported by grant T15LM011271
Acknowledgements

- Dr. Jejo Koola
- Dr. Tsung-Ting Kuo
- Elizabeth Santillanez
- Department of Biomedical Informatics
- National Library of Medicine – National Institutes of Health
- NLM Training Grant T15LM011271

Questions?