PFIZER’S CENTERS FOR THERAPEUTIC INNOVATION

REQUESTS PROPOSALS FOR THERAPEUTIC TARGETS

Deadline April 29, 2019

Pfizer’s Centers for Therapeutic Innovation, or CTI, is a unique joint drug discovery model focused on collaborating with leading academic medical centers to rapidly translate novel target opportunities into new medicines.

CTI Collaborations Include

- Funded project-related research
- Hands-on collaboration from dedicated Pfizer drug-development experts
- Access to scientific/technological expertise and infrastructure at Pfizer
- Potential for financial incentives in the form of milestone and royalty payments
- Flexible publishing rights
- Opportunity for involvement in CTI’s Foundation collaborations

Modalities Considered

- **Large Molecules:** antibodies, proteins, fusion proteins, antibody conjugates, conditional activated biotherapeutics for enhanced tissue/tumor targeting
- **Small Molecules:** target classes include kinases, deubiquitinating enzymes, GPCRs, ion channels, solute transporters, epigenetic targets, phosphatases, and RNA modulators

Areas of Interest

- **Cancer** – select solid tumors: colorectal, breast, lung, prostate, pancreatic, hepatocellular, ovarian cancers
- **Autoimmunity/Inflammation** – inflammatory bowel disease, Non-alcoholic fatty liver disease/Non-alcoholic steatohepatitis, atopic dermatitis, psoriasis, Rheumatoid arthritis.
- **Metabolic** – cardiometabolism, cachexia.
- **Rare** – monogenic hematologic (non-malignant) disorders, neurologic/neuromuscular disorders, inborn errors of metabolism, endocrine, renal and cardiovascular diseases. Ultra-rare indications are not in scope at this time.

Targets/Pathways Focus:

- DNA damage recognition and repair (e.g. replication stress or repair mechanisms)
- Tissue–resident immune modulation (e.g. adaptive or innate mechanisms, immunometabolism, etc.)
- Immune activators /enhancers (e.g. nucleic acid sensing, toll-like receptors etc)
- Modulation of senescence in cancer and non-neoplastic indications
- DNA repeat expansion diseases (e.g. Huntington’s disease, amyotrophic lateral sclerosis, myotonic dystrophy or frontotemporal dementia)
- Regulation of epithelial or mucosal barrier function including autophagy, host-microbe interactions
- Modulation of fibrosis pathways, either metabolism/stress-induced or inflammation-induced (possibly tumor-driven)
- Regulation of antigen-specific immune tolerance induction
- Emerging metabolic regulators in heart failure, satiety, nonalcoholic steatohepatitis and muscle biology

For further information about areas of focus, please contact Dr. Mary Faris at Mary.Faris@Pfizer.com.