HIV-1 Dual Infection and Neurocognitive Impairment

Gabriel Wagner, MD
Assistant Professor of Medicine
Infectious Diseases & Global Public Health
UC San Diego
HIV-Associated End Organ Damage

• Antiretroviral therapy (ART) reduces HIV morbidity and mortality.
• Even if a person takes ART, they can develop end organ damage.
 • Cardiovascular disease
 • Renal disease
 • Neurocognitive impairment
• Mechanisms are often multifactorial.
 • Natural aging
 • Persistent inflammation
 • Drug toxicities
 • Low-level residual viral replication

HIV-Associated Neurocognitive Disorder (HAND)

- Despite ART, 30-50% of individuals demonstrate mild impairment.
 - Even when HIV RNA levels in blood and cerebrospinal fluid (CSF) are undetectable
- Higher viral genetic diversity associated with HAND.

Heaton et al., *Neurology* 2010
Hightower et al., *Virology* 2012
HIV-1 Dual Infection

Co-infection

Strain 1 + Strain 2

Superinfection

Strain 1

Strain 2

Intrasubtype (same subtype)

or

Intersubtype (different subtypes)

Smith et al., JID 2005
HIV-1 Dual Infection

• Frequency estimates vary.
• In San Diego Primary Infection Resource Consortium, cumulative prevalence was **14.4%** (95% CI 8.6%–22.1%).
• Dual infection is associated with higher HIV viral loads and lower CD4 T-cell counts, *similar to HAND*.

• *Are HIV-1 dual infection and HIV-associated neurocognitive impairment related?*

Pacold et al., *AIDS* 2012
Wagner et al., *JID* 2014
Study Cohort

• CNS HIV Antiretroviral Therapy Effects Research (CHARTER) study.
• Participants had at least two longitudinal blood samples.
• All participants had neurocognitive assessments.
• Comorbid conditions that may contribute to HAND classified as:
 • Incidental
 • Contributing
 • Confounding
• CHARTER participants with confounding comorbidities were excluded.
Dual Infection Detection

Blood → PBMC → DNA → PCR
Dual Infection Detection

Blood \rightarrow PBMC \rightarrow DNA \rightarrow PCR

5' LTR gag

pol

3' LTR nef

5' LTR gag

1 2 3

p24 (253 bp) RT (534 bp) vpr

Deep sequencing Deep sequencing Deep sequencing

vpu rev tat

V3 (416 bp)

Deep sequencing

Wagner et al., JID 2014
• DI: nucleotide divergence exceeds intrahost evolution.
• Phylogenetic reconstruction and contamination check.
HIV Monoinfection

HIV Dual infection

Wagner et al., Poster 201, CROI Seattle 2017
Dual infection in study cohort

• Chronically infected participants on ART, N=38.
 • 87% men; 55% were MSM
 • Main HIV risk factor was sexual exposures (95%).
 • Median age was 50 years (IQR: 45 – 53 years).
 • Despite ART, 12 had detectable plasma HIV viral load > 500 copies/ml.

• Nine (24%) had two viruses in multiple samplings and were categorized as having dual infection.
 • No significant differences in plasma viral loads or CD4 T-cell counts
 • Detectable plasma and CSF viral loads were not associated with dual infection
 • Greater IV drug use in dual infection group marginally significant (P = 0.051)

Wagner et al., AIDS 2016
Dual infection and neurocognitive impairment

• Using first TP, global neurocognitive impairment identified in 21
 • Significantly lower CD4 T-cell counts (current and nadir) associated with impairment ($P = 0.028$ and $P = 0.043$, respectively)
 • No association with detectable plasma or CSF viral load

• After adjustment, multivariate analysis demonstrated a significant association between dual infection and HAND; OR = 18.30 (95% CI 1.94-414.16), $P = 0.028$.

| Adjusted analysis of effect of dual infection on neurocognitive impairment |
|-----------------------------|-----------------------------|-----------------------------|
| Predictor | OR (95% CI) | p value |
| Dual vs. mono-infection | 18.30 (1.94, 414.16) | 0.028 |
| Estimated duration of infection, per year | 0.87 (0.74, 0.99) | 0.17 |
| Current CD4 T-cell count, per cell | 0.997 (0.994, 0.999) | 0.017 |

Wagner et al., AIDS 2016
Conclusions

• Dual infection was common (24%) among chronically infected individuals receiving ART.

• Dual infection was associated with HAND.
 • Dual infection may increase risk of HAND
 • HAND may increase risk of dual infection
 • Both conditions may have a third condition in common

• Greater viral genetic diversity could increase risk of viral adaptation and fitness in the CNS:
 • HIV enters CNS early in infection
 • Dual infection most frequent in first 1–2 years after primary infection

Wagner et al., JID 2014
Davis et al., Neurology 1992
Future work

• Deep sequencing of CSF cell pellets to interrogate for two viral lineages in the CNS.
• Analysis of viral motifs associated with HAND.
• Deep sequencing of full-length HIV DNA to better characterize intrahost viral evolution in dual infection.
Acknowledgments

Davey Smith
Antoine Chaillon
Douglas Richman
Scott Letendre
Donald Franklin, Jr.
Bob Heaton
Joel Dimsdale

All participants in the CHARTER study.
HIV-1 genome
Targeted amplicon sequencing

1. 5' LTR
2. gag
3. pol
4. vpr
5. 3' LTR
6. nef
7. vpu
8. rev
9. tat
10. env
Targeted amplicon sequencing

target-specific primers → adaptors, barcodes → PCR enrichment → sequencing → read filtering and correction → reference mapping → functional annotations → variant calling