Improving vaccines against *Streptococcus pneumoniae* using synthetic glycans

Paulina Kaplonek⁷,⁸,⁹, Naem Khan⁴,¹, Katrin Reppe⁶,⁷, Benjamin Schumann⁷,², Madhu Emmadi⁵,³, Marilda P. Lisboa⁵,³, Fei-Fei Xu³, Adam D. J. Calow⁵, Sharavathi G. Parameswarappa³, Martin Witzenrath⁴,³, Claney L. Pereira⁵,³, and Peter H. Seeberger⁴,²,⁸

Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; ²Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; ³Division of Pulmonary Inflammation, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; and ⁴Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany

Edited by Michael L. Klein, Temple University, Philadelphia, PA, and approved November 6, 2018 (received for review July 11, 2018)

Streptococcus pneumoniae remains a deadly disease in small children and the elderly even though conjugate and polysaccharide vaccines based on isolated capsular polysaccharides (CPS) are successful. The most common serotypes that cause infection are used in vaccines around the world, but differences in geographic and demographic serotype distribution compromises protection by leading vaccines. The medicinal chemistry approach to glycoconjugate vaccine development has helped to improve the stability and immunogenicity of synthetic vaccine candidates for several serotypes leading to the induction of higher levels of specific protective antibodies. Here, we show that marketed CPS-based glycoconjugate vaccines can be improved by adding synthetic glycoconjugates representing serotypes that are not covered by existing vaccines. Combination (coformulation) of synthetic glycoconjugates with the licensed vaccines Prevnar13 (13-valent) and Synflorix (10-valent) yields improved 15- and 13-valent conjugate vaccines, respectively, in rabbits. A pentavalent semisynthetic glycoconjugate vaccine containing five serotype antigens (sPCV5) elicits antibodies with strong opsonophagocytic activity. This study illustrates that synthetic oligosaccharides can be used in coformulation with both isolated polysaccharide glycoconjugates to expand protection from existing vaccines and each other to produce precisely defined multivalent conjugated vaccines.

Significance

Bacterial infections caused by *Streptococcus pneumoniae* are responsible for millions of deaths world-wide each year. Currently marketed glycoconjugate vaccines do not cover all serotypes, such that serotype replacement is observed clinically. Our work aimed at improving the licensed vaccines Prevnar13 (13-valent) and Synflorix (10-valent) by adding synthetic glycoconjugates representing serotypes that are not covered by existing vaccines, and developing a pentavalent semisynthetic glycoconjugate vaccine (sPCV5). The sPCV5 as well as coformulation of existing vaccines proved highly efficacious in a rabbit model considering the three most important indicators of vaccine efficacy. A substantial rise in antibody titer between pre- and post-immunization sera was observed and the opsonophagocytic activity of antibodies, and immunological memory were confirmed.

www.pnas.org/cgi/doi/10.1073/pnas.1811862115

PNAS | December 26, 2018 | vol. 115 | no. 52 | 13353–13358
Rabbit immunization experiments were carried out by Kaplonek et al. CRM197 conjugates of synthetic oligosaccharide antigens resembling the capsular polysaccharides (CPS) of Streptococcus pneumoniae serotypes 2 (ST2), 3 (ST3), 5 (ST5), 8 (ST8), and 14 (ST14). Oligosaccharide antigens were synthesized using standard protocols and conjugated to CRM197 using the bis(4-nitrophenyl) adipate (PNP)-activated ester method. Synthetic antigens were printed on NHS-activated microarray slides. Immunization was carried out using New Zealand White (NZW) rabbits and the immune response analyzed by microarrays and ELISA. The functional attribute of the immune response was monitored by OPKA using HL-60 cells. Detailed materials and methods can be found in SI Appendix.

Materials and Methods

Study Design and Sample Size. The aims of this study were (i) to improve existing polysaccharide glycoconjugate vaccines by coformulating them with the oligosaccharide-based glycoconjugates of nonvaccine serotypes and (ii) to formulate the pentavalent semisynthetic vaccine. The sample size was determined based on previous analyses to ensure statistical significance while minimizing animal usage (19). Each experimental group contained three to six animals. P values of <0.05 were considered statistically significant.

Ethical Statements. Rabbit immunization experiments were carried out by BioGenes GmbH. The animals were housed and handled according to international animal regulations (European Union [EU] Directive 2010/63/EU) and sanctioned by governmental authorities “Landesamt für Landwirtschaft, Lebensmittelsicherheit und Fischerei Mecklenburg-Vorpommern” (LALF M-V).

Results

A medicinal chemistry approach to glycoconjugate vaccine development is enabled by accelerated access to defined oligosaccharides by AGA (23, 24). Minimal protective glycan epitopes are identified using synthetic homogeneous oligosaccharides that constitute one or more repeating units of bacterial CPS. Glycoconjugates containing such synthetic antigens have been previously tested individually for their antigenicity, immunogenicity, and protective effects in animal challenge models of disease, and have shown to be effective in some cases (9, 10, 17–19). We aimed to expand S. pneumoniae vaccine coverage by including serotype antigen conjugates (Fig. 1) that are either currently absent from marketed vaccines, such as ST2 and ST8 in the case of Prevnar13 and additionally ST3 in the case of Synflorix, or present in marketed vaccines, such as ST2 and ST8 in the case of Prevnar13 and Synflorix to enhance their coverage. These multivalent vaccines induce a strong antibody response and immunological memory in rabbits. The resulting antibodies are capable of killing the respective bacteria.
the carrier protein CRM197 using bis(4-nitrophenyl) adipate. The resulting glycoconjugates were characterized by a gel shift assay (10% SDS/PAGE) (SI Appendix, Fig. S1) and found by MALDI-TOF mass spectrometric analysis to contain between 7 and 11 glycan epitopes on each CRM197 protein molecule (ST2: 8.8; ST3: 7.2; ST5: 9.7; ST8: 11.2; and ST14: 8.7) (SI Appendix, Figs. S2–S6). Immunization of NZW rabbits with the glycoconjugates induces strong anti-glycan antibody titers, as determined by ELISA and glycocalcium microarray (SI Appendix, Fig. S7).

Coformulation of Synthetic Conjugates Representing Nonvaccine Serotypes (ST2, ST3, and ST8) with Marketed Pneumococcal Conjugate Vaccines. Rabbits were immunized s.c. with 100 μL of coformulated vaccines Prevnar13+ST2+ST8 or Synflorix+ST2+ST3+ST8 (2.2 μg of each synthetic glycan). Antibody titers were analyzed by ELISA (Fig. 2 A, B, and E–G) and glycocalcium microarray (SI Appendix, Fig. S7). The coformulated vaccines elicit significant immune responses, but as expected the serological effects are weaker than those observed after immunization with single serotypes. The sera of animals that received the coformulated vaccines contain antibodies that perform well in vitro OPKA (Fig. 2 C, D, H, and I). The higher antibody titer responsible for 50% bacteria killing for coformulated vaccines compared with single serotypes is caused by an overall weaker serotype-specific antibody response.

Formulation of Semisynthetic Pentavalent Conjugated Vaccine sPCV5. The semisynthetic pentavalent-conjugated vaccine sPCV5 containing all five of the above synthetic glycoconjugates (2.2 μg of each sugar antigen adsorbed onto 125 μg of Al(OH)3 alum in PBS) was evaluated based on its immunogenicity and ability to boost production of protective antibodies. A group of six female NZW rabbits were immunized s.c. with 0.5 mL of sPCV5. The placebo group received CRM197 with Al(OH)3, while the positive control groups received Prevnar13 or Synflorix with identical immunization schedules. Individual rabbit sera were analyzed for specific CPS antibodies by ELISA (Fig. 3) and glycocalcium microarrays (SI Appendix, Fig. S7). Overall, sPCV5 elicits a strong, polysaccharide-specific antibody response compared with marketed vaccines. Antibody titers against nonvaccine ST2 CPSs elicited by sPCV5 are comparable to coformulated Prevnar13+ST2+ST8 and Synflorix+ST2+ST3+ST8 and in the case of ST8 the antibody level is slightly lower. The ST3 antigen already present in Prevnar13 triggers an antibody response similar to that of sPCV5 and coformulated Synflorix+ST2+ST3+ST8. The ST5 antigen present in licensed vaccines is problematic as the ketone moiety in the ketoamino sugar 2-acetamido-2,6-dideoxy-hexose-4-ulos (Sugp) becomes reduced during vaccine production, yielding a mixture of different antigens and decreased immunogenicity (9). On the other hand, the reduced ST5 antigen used here with reducing end 2-N-acetyl-2-deoxy-β-o-fucopyranoside (Fig. 1), identified by the medicinal chemistry approach, yields a better immune response in rabbits immunized with sPCV5 compared with the licensed vaccines Prevnar13 and Synflorix. Surprisingly, a lower IgG production of protective antibodies. A group of six female NZW rabbits were immunized s.c. with 100 μL of sPCV5. The placebo group received CRM197 with Al(OH)3, while the positive control groups received Prevnar13 or Synflorix with identical immunization schedules. Individual rabbit sera were analyzed for specific CPS antibodies by ELISA (Fig. 3) and glycocalcium microarrays (SI Appendix, Fig. S7). Overall, sPCV5 elicits a strong, polysaccharide-specific antibody response compared with marketed vaccines. Antibody titers against nonvaccine ST2 CPSs elicited by sPCV5 are comparable to coformulated Prevnar13+ST2+ST8 and Synflorix+ST2+ST3+ST8 and in the case of ST8 the antibody level is slightly lower. The ST3 antigen already present in Prevnar13 triggers an antibody response similar to that of sPCV5 and coformulated Synflorix+ST2+ST3+ST8. The ST5 antigen present in licensed vaccines is problematic as the ketone moiety in the ketoamino sugar 2-acetamido-2,6-dideoxy-hexose-4-ulos (Sugp) becomes reduced during vaccine production, yielding a mixture of different antigens and decreased immunogenicity (9). On the other hand, the reduced ST5 antigen used here with reducing end 2-N-acetyl-2-deoxy-β-o-fucopyranoside (Fig. 1), identified by the medicinal chemistry approach, yields a better immune response in rabbits immunized with sPCV5 compared with the licensed vaccines Prevnar13 and Synflorix. Surprisingly, a lower IgG
A titer was observed in the case of ST14 as incorporated into sPCV5 compared with the marketed vaccines.

Antibodies in Sera of Animals Immunized with sPCV5 and Coformulated Vaccines Show in Vitro Opsonophagocytic Activity. Polysaccharide-specific antibodies are the major protective mechanism against pneumococcal bacteria. To determine antibody-mediated bacterial killing in vitro, OPKAs were performed with pooled sera of rabbits immunized with (i) serotype-specific synthetic glycoconjugates alone; (ii) the combination of semisynthetic glycoconjugates (sPCV5); (iii) coformulations of synthetic oligosaccharide conjugates with licensed vaccines (Prevnar13+ST2+ST8 or Synflorix+ST2+ST3+ST8); (iv) the licensed vaccines (Prevnar13 or Synflorix) and (v) placebo (CRM197 plus alum) (Fig. 4). Sera were heat inactivated and compared with the Human Anti-Pneumococcal capsule Reference Serum (007sp) that is the established WHO standard serum (25). The OPKA results confirm that the synthetic glycoconjugate vaccines elicit opsonic antibodies that are able to kill the respective bacterial serotypes (Fig. 4 A–E). Overall, the serum dilutions necessary for 50% bacterial killing, estimated by nonlinear interpolation of the dilution-killing OPKA data, are considered biologically significant for successful vaccines (Fig. 4 F–H). These values vary from serotype to serotype and are substantially higher for the vaccine-present ST5 serotype (Fig. 4 F) and the nonvaccine ST8 serotype (Fig. 4 G) compared with Prevnar13 and human reference serum 007sp. The OPKA results are consistent with the serological data (Fig. 3).

Synthetic Glycoconjugate Vaccine Induces Memory Response. NZW rabbits (n = 3–6) were vaccinated s.c. with sPCV5, Prevnar13+ST2+ST8, or Synflorix+ST2+ST3+ST8 as well as appropriate controls with Prevnar13 or Synflorix were boosted on day 119 (91 d after the last scheduled immunization on day 28). Over the 13 wk resting period, IgG titers had decreased as expected before the booster immunization at day 119, which resulted in high antibody titers at day 126 that are associated with memory B cells as assessed by ELISA (Fig. 5). The serum antibodies on day 126 are highly active as confirmed by OPKA analysis (SI Appendix, Fig. S8).

Discussion

Induction of protective antibodies upon active immunization is crucial for the efficacy of bacterial vaccines. Capsular polysaccharides are abundant surface molecules of many pathogenic
Microorganisms such as bacteria, protozoa, and fungi (26). Active immunization with carbohydrate antigens elicits glycan-specific protective immune responses. Poorly immunogenic carbohydrate antigens and ill-defined conjugation render the production of carbohydrate-based vaccines challenging (27). Licensed polysaccharide-based 7-, 10-, and 13-valent pneumococcal conjugate vaccines are effective in significantly reducing the burden of IPD-related mortality and morbidity (8). Despite the success of glycoconjugate pneumococcal vaccines, limited serotype coverage and infections by nonvaccine serotypes cause problems globally (28, 29). Serotype replacement, the observation that infection is caused by serotypes not included in marketed vaccines, has been widely reported (30).

S. pneumoniae serotypes that are not included in current marketed vaccines such as ST2 and ST8 are responsible for IPDs in risk groups globally (31–33). Conjugation of licensed polysaccharide conjugate vaccines and oligosaccharide-based glycoconjugate vaccine candidates of nonvaccine serotypes would increase serotype coverage. Expansion would be particularly important in regions where serotype distribution differs from those included in the polysaccharide conjugate vaccines. With our coformulated vaccines (Prevnar13+ST2+ST8 and Synflorix+ST2+ST3+ST8) we were able to demonstrate that it is possible to broaden the serotype spectrum of marketed vaccines by adding synthetic oligosaccharide conjugates. The antibody response against serotype-specific CPS observed with single glycoconjugate vaccines was somewhat higher than that resulting from the coformulated vaccines. This observation may be explained by considering a few key factors. First, the coformulations, as with Prevnar13 and Synflorix, with numerous antigens may burden the immune system by engaging multiple parallel responses to the different serotype epitopes and reducing the efficiency of the response to any given single one; whereas, in the case of the single glycoconjugate, this burden is not present and the response is more efficient. Second, the preadsorbed longer polysaccharides from the licensed vaccine may compete with the shorter synthetic oligosaccharide examined here; that is, longer CPSs may mask shorter oligosaccharides. Additionally, synthetic glycoconjugates were added to the preformulated vaccines containing 13 isolated polysaccharides with aluminum phosphate AlPO₄ as an adjuvant; however, we have found our constructs to be better adsorbed on aluminum hydroxide Al(OH)₃ (SI Appendix, Table S1). This critical aspect of vaccine development has been discussed for other carbohydrate conjugate vaccines such as Hib-CRM197 and MenC-CRM197 conjugates which adsorb weakly or not at all to aluminum phosphate (0–11% and 0%, respectively) and strongly to aluminum hydroxide (88–100% and 90–100%, respectively) (34, 35).

To overcome this problem with mixing chemically precisely defined synthetic oligosaccharides with the poorly defined native polysaccharide antigens isolated from bacterial culture present in the formulated marketed vaccines, we further designed the completely semisynthetic glycoconjugate sPCV5. Homogeneous synthetic antigens that constitute pharmaceuticals with virtually no batch-to-batch variability activate the desired immune response and are cost-effective compared with biologicals. Modifications could be implemented down to the atomic level to increase both immunogenicity and protective effects as has been illustrated for ST5 where a ketone was replaced by a hydroxyl group to improve stability while maintaining immunogenicity and antigenicity. One dominant criterion used to assess an adequate vaccination response in adults is a two- to fourfold change in specific antibody levels after vaccination as measured by ELISA (36, 37). The semisynthetic pentavalent conjugated vaccine sPCV5 reached this standard for all serotypes except ST14 CPS. We are able to achieve high levels of specific antibodies, even though the adsorption ratio of glycoconjugates on alum particles, one of the key factors that influences immune responses, was lower than expected (SI Appendix, Table S1). The function of polysaccharide is characterized by the opsonic titer, which is the titer of antibodies against the capsular polysaccharide as determined by an OPKA (38). Protection in infants vaccinated with anti-pneumococcal vaccines is expected when an opsonic titer of at least 1:8 is reached in a mouse model (39, 40). The pentavalent sPCV5 triggers the production of highly active opsonophagocytic antibodies, that are more efficient than Prevnar13, Synflorix, and the coformulations of these licensed vaccines with synthetic glycoconjugates, again with the exception of serotype ST14. The comparatively poor performance of ST14 as present in sPCV5 cannot be simply explained on the basis of the data reported here and is currently under investigation. It is possible that the physicochemical properties of this highly branched and compact tetrasaccharide hinder its efficient adsorption onto the alum particles.

Conjugation of the saccharides to the protein carrier induces a T cell dependent immune response and the formation of memory B cells (41). The antibody level gradually diminishes after a series of primary immunizations, and immunological memory is enhanced by a final booster dose with the vaccine. Large increases in IgG concentration within 5 to 7 d after the final booster immunization on day 119 proved the formation of immunological memory. The IgG produced after the final boosting dose proved to be protective (SI Appendix, Fig. S8).

The semisynthetic sPCV5 as well as coformulation of existing vaccines with synthetic glycans proved highly efficacious in a rabbit model considering the three most important indicators of vaccine response.
efficacy. A substantial rise in antibody titer between pre- and postimmunization sera was observed and the opsonophagocytic activity of antibodies, and immunological memory were confirmed. The medicinal chemistry approach to carbohydrate-conjugate vaccine design based on AGA and glycan arrays is advantageous to the formulation of multivalent synthetic vaccine candidates and to extending coverage with existing vaccines (42, 43).

ACKNOWLEDGMENTS. We thank Dr. Allison Berger and Tom Monroe for carefully revising the manuscript; Eva Settels and Olaf Niwers for technical support and help with NMR analyses. We gratefully acknowledge financial support from the Max Planck Society. This work was supported in part by grants from the German Research Foundation (SFB/TR 84 “Innate Immunity of the Lung,” C3, C6, CB; to M.W. and P.H.S.) and from the German Federal Ministry of Education and Research (eMed CAPSyS-FKZ 01ZX1304B; to M.W.). We also appreciate the support of Zentrum für Infektionsbiologie und Immunität (ZIB) Graduate School and International Max Planck Research School for Infectious Diseases and Immunology program (IMPRS-ID).