COVID-19 Updates

Visit UC San Diego's Coronavirus portal for the latest information for the campus community.

Gert Cauwenberghs, PhD

Department of Bioengineering

Contact Information

Phone: 858.534.6938
Lab Phone: 858.534.9422

Bioengineering Building, Room 304

Mailing Address:
University of California, San Diego
9500 Gilman Drive #0412
La Jolla, CA 92093

Lab Website

My research and that of my students cover analog and digital VLSI microsystems for adaptive neural computation and sensory information processing, from neuromorphic systems engineering and kernel-based learning machines to micropower implantable neural interfaces, acoustic microarrays, adaptive optics and biometric identification. My group contributed a variety of highly efficient analog VLSI processors for vision, audition and pattern classification which outperform general-purpose digital processors with a factor 100-10,000 reduction in power dissipation and similar savings in silicon area.

The focus of our research is on cross-cutting advances at the interface between in vivo and in silico neural information processing. The goals are threefold: to empower silicon integrated circuits with adaptive intelligence inspired by sensory information processing in nervous systems; to facilitate advances in computational neuroscience by large-scale emulation of neural models in parallel analog silicon circuits; and to interface silicon with neural cells for restoring lost function in sensory and motor impaired patients.

Adaptation, learning and memory in analog VLSI have been the focus of extensive research in our laboratory. The edited volume Learning on Silicon (Kluwer Academic, 1999) serves as a reference to this emerging field. Our work formulated and implemented mechanisms of adaptation and learning embedded in parallel distributed architecture which, like synaptic plasticity in nerve assemblies, sustain computational intelligence in variable and complex environments and compensate for imprecision in analog computation. This research earned the recognition of a Presidential Early Career Award for Scientists and Engineers (PECASE) and an ONR Young Investigator Award. Our work extends to kernel learning machines which incorporate principles of statistical learning theory. Recently we developed the Kerneltron, a support vector "machine" as a massively parallel VLSI array processor on a single chip with energy efficiency on par with synaptic transmission in the mammalian brain. Our work in Bioengineering and INC at UCSD continues to pursue advances in the cognitive performance and efficiency of neuromorphic cognitive adaptive systems and wireless brain interfaces.

Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review Y.M Chi, T.P. Jung, and G. Cauwenberghs, IEEE Reviews in Biomedical Engineering, vol. 3, pp. 106-119, 2010.

Analog VLSI Biophysical Neurons and Synapses with Programmable Membrane Channel Kinetics T. Yu and G. Cauwenberghs, IEEE Trans. Biomedical Circuits and Systems, vol. 4 (3), pp. 139-148, 2010.

A SiGe BiCMOS 8-Channel Multi-Dithering, Sub-Microsecond Adaptive Controller D.N. Loizos, P.P. Sotiriadis and G. Cauwenberghs, IEEE Trans. Circuits and Systems I: Regular Papers, vol. 57 (1), pp. 53-63, 2010.

Wireless Micropower Instrumentation for Multimodal Acquisition of Electrical and Chemical Neural Activity M. Mollazadeh, K. Murari, G. Cauwenberghs, and N. Thakor, IEEE Trans. Biomedical Circuits and Systems, vol. 3 (6), pp. 388-397, 2009.

Which Photodiode to Use: a Comparison of CMOS-Compatible Structures K. Murari, R. Etienne-Cummings, N. Thakor, and G. Cauwenberghs, IEEE Sensors Journal, vol. 9 (7), pp. 752-760, 2009.

Focal-Plane Change Triggered Video Compression for Low-Power Vision Sensor Systems Y.M. Chi, R. Etienne-Cummings and G. Cauwenberghs, PLoS ONE, vol. 4 (7), e6384, 2009.

Rapid Determination of Particle Velocity from Space-Time Images Using the Radon Transform P.J. Drew, P. Blinder, G. Cauwenberghs, A.Y. Shih and D. Kleinfeld, J. Computational Neuroscience, 10.1007/s10827-009-0159-1, 2009.

Micropower CMOS Integrated Low-Noise Amplification, Filtering, and Digitization of Multimodal Neuropotentials M. Mollazadeh, K. Murari, G. Cauwenberghs, and N. Thakor, IEEE Transactions on Biomedical Circuits and Systems, vol. 3 (1), pp. 1-10, 2009.